Self–Regulated Learning with Computer–Based Learning Environments

Roger Azevedo, Ph.D.
University of Memphis
Department of Psychology
Institute for Intelligent Systems
Overview

- Learning with hypermedia
- Self-regulated learning with hypermedia
- Self-regulated learning frameworks
- Cognition and Technology Lab (CTL)
 - SRL framework
 - Research questions
 - Results
- Principles—design of MetaCognitive tools
Introduction

Research on Learning with Hypermedia
- Learners rarely develop a deep conceptual understanding of complex science topics
- Learners lack cognitive and metacognitive skills
- Focus on product of learning and frequency of tool use

SRL with Hypermedia
- Contemporary cognitive research shows that the potential of hypermedia as a learning tool may be undermined by students’ inability to regulate their learning

Scaffolding SRL with Hypermedia
- Testing the effectiveness of scaffolding conditions to facilitate students’ learning of complex and challenging science topics with hypermedia
Self-Regulated Learning with Hypermedia
Science of Learning

- Science of learning with technology
- Multiple theoretical approaches
- Focus on product and processes of learning
- Focus on cognitive and metacognitive processes
- Multi–method approaches
- Human tutoring and adaptivity
- Scaffolding metaphor
- Multiple internal and external representations
- Designing adaptive technologies

Cognitive Psychology
Cognitive Science
Learning Sciences
Ed. and Dev. \(\Psi \)
AI, CS, Comp. Linguistics
SRL Frameworks and Models
(Pintrich, 2000; Schunk, 2005; Winne, 2001; Zimmerman, 2000; 2001)

<table>
<thead>
<tr>
<th>AREAS</th>
<th>Cognition</th>
<th>Motivation/Affect</th>
<th>Behavior</th>
<th>Context</th>
</tr>
</thead>
</table>
| **Forethought, Planning, Activation** | • Goal setting
• PKA | • Goal orientation
• Task value
• Efficacy judgment | • Time and effort planning | • Perception of task
• Perception of context |
| **Monitoring** | • JOL
• FOK | | | • Monitoring changing task conditions |
| **Control** | • Learning strategies | • Increase/decrease effort
• Help-seeking behavior
• Persistence | | • Change or renegotiate task |
| **Reaction and Reflection** | • Schema adaptations | • Attributions | | • Evaluation of task
• Evaluation of context |
IPT Model of SRL
(Winne, 2001; Winne & Hadwin, 1998)

Strengths
- Theory-driven
- Information processing
- Cognitive and metacognitive processes
- Feedback loops
- Dynamic, cyclical and recursive processes
- Control and monitoring are the hubs of SRL

Challenges
- Individual cognition
- Studying vs. learning
- Macro-level specification of SRL processes
- Lacks empirical evidence
Research on Learning with Hypermedia
- Theoretically-driven
- Mediating self-regulatory processes between learner characteristics, system features, and instructional context

Bridging from SRL to ERL Based on Human Tutoring
- Converge process and product data
- Areas of regulation
- Phases of regulation
- Analyze students’ self-regulated learning
- Analyze the role of human tutors as external regulating agents in facilitating SRL
Contextual Model of Self-Regulated Learning with CBLEs

Learning Context
- Learning goal(s)
- Instructional resources
- Learning systems (e.g., CBLE)
- External (co-)regulatory agents (embedded artificial or human agents)
- Feedback system (including levels, types, timing, delivery system)

Task Conditions
- Instructional resources
- Time allotted for task completion (duration of learning session)

Cognitive, Affective, Metacognitive and Motivational (CAMM) Processes
- Prior knowledge
- Knowledge of strategies
- Knowledge of the task
- Knowledge of and skills in using monitoring processes
- Motivational factors and orientations
- Affective states

Learning System (CBLE)
- Non-linear structure
- Multiple representations of information
- Content space
- Levels of learner control
- Levels of scaffolding
- Levels of adaptivity
Research Questions

1) Do different scaffolding conditions lead learners to gain significantly more **declarative knowledge** of the circulatory system?

2) Do different scaffolding conditions influence learners' shift to more-sophisticated **mental models** of the circulatory system?

3) **How** do different scaffolding conditions influence learners' **self-regulated learning**?

4) What is the role of **external regulating agents** (human tutors, classroom teachers, and peers) in facilitating learners' self-regulated learning?
Self-Regulated Learning

• Associated with learners gaining significantly more declarative knowledge of complex science topics
• Greater odds of learners NOT “shifting” to more sophisticated mental models
• Associated with learners regulating their learning by deploying non-adaptive self-regulatory processes related to planning, monitoring, and a few less effective learning strategies
Externally-Regulated Learning

- Associated with learners gaining significantly more declarative knowledge of complex science topics
- Greater odds of students “shifting” to more sophisticated mental models
- Associated with students regulating their learning by deploying key self-regulatory processes—planning, monitoring activities, effective strategies, and help-seeking behavior

- **Implications for the design of hypermedia**
 - Design scaffolds that foster SRL by *adapting* in response to students understanding of complex science topics as it emerges during learning
Key

Self-Regulatory Processes
- Planning
 - Activating Prior Knowledge
 - Creating Sub-Goals
- Monitoring
 - Judgment of Learning
 - Feeling of Knowing
 - Monitoring Use of Strategies
 - Monitoring Progress Towards Goals
 - Time Monitoring
- Learning Strategies
 - Coordinating Informational Sources
 - Drawing
 - Inferencing
 - Knowledge Elaboration
 - Summarization
 - Re-Reading
 - Self-Test
 - Review Notes
- Handling Task Difficulties and Demands
 - Help-Seeking behavior

Other

Self-Regulatory Processes
- Planning
- Monitoring
- Content Evaluation
- Learning Strategies
 - Free Search
 - Take Notes
 - Memorization
- Handling Task Difficulties and Demands
 - Task Difficulty
Implications for the design of hypermedia

- *What, when, how, and why* to foster and sustain SRL?
- Design scaffolds that foster and sustain SRL by *adapting* to students’ emerging understanding of complex science topics during learning.

Adaptivity (detect, model, and trace SRL)

- Detecting evolving understanding and complex interactions between learner characteristics and system features:
 - Planning and activating prior knowledge
 - Prompting students to use JOL and FOK, and monitor their progress towards goals
 - Prompting the use of several effective learning strategies
 - Allowing students to engage in help-seeking behavior.
Acknowledgments

Grants and Contracts
- National Science Foundation
 - Early Career Grant REC#0133346, REC#0633918, CRCD#0088081
- Social Science and Humanities Research Council of Canada
 (SSHRC; Dr. Winne)
- US Dept. of Education (from Vanderbilt University; Dr. Bransford)

Current and former members of the CTL
- Witherspoon, Sullins, Baker, Jeon, Lewis, Trousdale, Scott, Siler, Poulos, Leonard, and West
- Cromley, Winters, Moos, Greene, Vick, Olson, Godbole-Chaudhuri, Hofman, Carioti, Travis, Denis, Kebele, Huang, Xu, Clark, and Smith

Colleagues
- UM—Graesser, McNamara, and Rus
- Lajoie, Hadwin, Winne, Seibert, Guthrie, Wigfield, Byrnes, Alexander, Jacobson, Hmelo-Silver, Gerjets, and Zimmerman

For more information, contact:
http://azevedolab.autotutor.org/
or
razevedo@memphis.edu