Research Article

UNEMPLOYMENT ALTERS THE SET POINT FOR LIFE SATISFACTION

Richard E. Lucas,1 Andrew E. Clark,2 Yannis Georgellis,3 and Ed Diener4

1Michigan State University; 2Département et Laboratoire d'Economie, Théorique et Appliquée, Paris, France; 3Brunel University, Uxbridge, Middlesex, England, United Kingdom; and 4University of Illinois and The Gallup Organization

Address correspondence to Richard E. Lucas, Department of Psychology, Michigan State University, East Lansing, MI 48824; e-mail: lucasri@msu.edu.

Abstract

According to set-point theories of subjective well-being, people react to events but then return to baseline levels of happiness and satisfaction over time. We tested this idea by examining reaction and adaptation to unemployment in a 15-year longitudinal study of more than 24,000 individuals living in Germany. In accordance with set-point theories, individuals reacted strongly to unemployment and then shifted back toward their baseline levels of life satisfaction. However, on average, individuals did not completely return to their former levels of satisfaction, even after they became reemployed. Furthermore, contrary to expectations from adaptation theories, people who had experienced unemployment in the past did not react any less negatively to a new bout of unemployment than did people who had not been previously unemployed. These results suggest that although life satisfaction is moderately stable over time, life events can have a strong influence on long-term levels of subjective well-being.

Subjective well-being (SWB) researchers examine the causes and correlates of life satisfaction, positive affect, and negative affect (Diener, Suh, Lucas, & Smith, 1999). These variables are moderately stable over time and often change only slightly following major life events. Life circumstances, including health, income, and beauty, often account for a very small percentage of variance in SWB (Argyle, 2001; Diener et al., 1999; Myers, 1992), and most life events affect SWB for less than 3 months (Suh, Diener, & Fujita, 1996). Furthermore, personality variables seem to play a strong role in determining individuals' levels of SWB (Diener & Lucas, 1999). Lykken and Tellegen (1996), for instance, used a twin study design to examine the heritability of well-being, and they concluded that about 80% of the variance in long-term stable levels of SWB could be attributed to inborn temperament. Because of these findings, researchers have claimed that people have SWB set points (Headey & Wearing, 1992). According to this theory, people initially react to events, but then return to baseline levels of well-being that are determined by personality factors. The assumption that happiness set points exist has guided much of the current theory and research on SWB (Diener et al., 1999; Seligman, 2002)

Most studies that test the set-point theory examine reactions to life events using one of two research designs. Cross-sectional studies examine the impact of life events by comparing the SWB of people who have experienced an event with the SWB of those who have not (e.g., Brickman, Coates, & Janoff-Bulman, 1978); postevent longitudinal studies examine the course of adaptation using a longitudinal design that begins shortly after an event has taken place (e.g., Silver, 1982). Unfortunately, neither of these designs is ideal because preevent levels of SWB are not known. Thus, these designs cannot determine whether people return to preevent levels of
SWB. In fact, because many events do not occur randomly, differences in happiness might precede the experience of events. For example, longitudinal studies have shown that happiness prospectively predicts higher income levels (e.g., Diener, Nickerson, Lucas, & Sandvik, 2002; Marks & Fleming, 1999), better health (Danner, Snowdon, & Friesen, 2001), and the experience of various positive life events (Magnus, 1991). Thus, differences in happiness might precede events or even cause events to occur.

Existing prospective studies of adaptation to life events suffer from an additional limitation: By focusing on group-level characteristics rather than within-person changes, these studies may provide an incomplete picture of adaptation processes. In prospective longitudinal studies of life events, researchers often compare average levels of SWB before and after an event. If these levels are the same, researchers may conclude that adaptation has occurred. However, even if average levels are stable, there could be a great deal of individual-level instability. People who were above average before the event could be below average after the event, while mean levels stayed the same. Therefore, to provide an adequate test of set-point theory, researchers must use large-sample longitudinal studies to examine both individual-level and group-level changes following exposure to an important life event.

In the current study, we examined long-term adaptation by tracking changes in life satisfaction before, during, and after the experience of unemployment. Previous cross-sectional studies of unemployment have shown that unemployed individuals tend to be substantially less happy than employed individuals (Argyle, 2001). In addition, individuals who have been unemployed at some point in the past tend to be less satisfied than individuals who have never been unemployed (Clark, Georgellis, & Sanfey, 2001). As we have mentioned, however, such cross-sectional studies leave open the possibility that unemployed individuals were less happy even before the unemployment period began. No study has determined whether individuals ultimately return to baseline levels of satisfaction after the period of unemployment ends.

If set-point theory is correct, individuals should initially react to unemployment, but then return to their baseline levels after a year or two. In contrast, if unemployment alters the set point for life satisfaction, then people will not fully adapt to the unemployment event, even years after they become reemployed. This question is of large applied importance to society because it is relevant to whether progress in societal SWB is doomed by what Brickman and Campbell (1971) called the hedonic treadmill—"a process by which gains and setbacks in well-being are inevitably followed by adaptation back to baseline (Kahneman, 1999).

METHOD

The data in this study were obtained from Waves 1 through 15 of the German Socio-Economic Panel Study (GSOEP), a longitudinal study of German households (see Haisken-De New & Frick, 1998, for a description of the study and its sample). Households were selected using multistage random sampling, and all members of each selected household were asked to participate. Surveys were conducted yearly using face-to-face interviews. Response rates for the survey were generally very high (ranging from 60% to 70% across various subsamples), and attrition rates were low (ranging from 3% to 13% per year; see Haisken-De New & Frick, 1998, and Lucas, Clark, Georgellis, & Diener, 2003, for more details). The entire sample consists of more than 24,000 respondents who participated in at least 1 of the 15 waves. Of those respondents, 5,184 reported being registered as unemployed during at least one wave of the study.

In addition to answering a variety of demographic questions (including a question on
employment status, the primary independent variable in the current study), participants indicated how satisfied they were with their lives at the time of each survey, using a scale that ranged from 0 to 10. Preliminary analyses of this measure revealed what appear to be historical trends in average satisfaction scores (e.g., satisfaction scores declined before the fall of the Berlin Wall, increased following the fall, and then gradually decreased again). Because of these trends, we centered satisfaction scores within each year and within the four subsamples of the larger population (West Germans, East Germans, immigrants to Germany, and foreigners living in Germany).¹ Thus, a score of zero on the life-satisfaction measure reflects the average level of satisfaction for a particular year within a particular subsample.

We used a multilevel modeling approach to investigate changes in life satisfaction before, during, and after unemployment (see the appendix for details; see Lucas et al., 2003, for a more detailed discussion of the same model, used in a similar context). Multilevel models allow for the simultaneous investigation of within- and between-person effects. For example, one can examine the effect of a within-person variable (employment status) on life satisfaction over time and then test whether various between-person factors (e.g., age, sex, and income) moderate the within-person effect of unemployment. Multilevel models also allow for different numbers of assessment occasions for different participants (some participants entered the study after the study began or dropped out before the most recent year of the study) and allow individuals to be included in the analyses regardless of when the unemployment event occurred.

If set-point theory is correct, individuals should experience a brief reaction to unemployment, followed by a period during which satisfaction shifts back toward baseline. The critical test for set-point theory is whether satisfaction scores ever return to pre-event levels. To test the hypothesis that people do return to baseline, we selected a subset of our sample who started the survey employed, experienced some period of unemployment during the course of the study, and eventually regained employment (n = 3,733).² This selection criterion allowed us to estimate a baseline level of satisfaction during which individuals were employed. Next, we examined three periods of time surrounding the first unemployment event. The first was the baseline period, which consisted of all years at least 2 years prior to the year during which the individual reported being unemployed. We did not include the year immediately preceding the event as part of the baseline phase because preliminary analysis of the data set suggested that people exhibit anticipatory reactions to the experience of unemployment. Satisfaction levels often start to decrease in the year before unemployment, and including this year as part of the baseline would artificially lower the estimate of baseline level of satisfaction.

The second period, the reaction period, consisted of the year before the first period of unemployment, all consecutive years of unemployment, and the year after unemployment. We included the year after unemployment in the reaction phase to allow individuals time to return to baseline. Finally, the adaptation period consisted of all years more than 1 year after the first period of unemployment had ended. The multilevel model tested the difference between average satisfaction in the baseline period and average satisfaction in the reaction and adaptation periods. If set-point theory is correct and individuals quickly return to baseline, levels of satisfaction in the adaptation phase should not have been different from levels of satisfaction in the baseline phase.³

As a final test of the set-point theory, we examined whether there were gradual, linear changes in satisfaction following reemployment. If there was a significant linear effect, we could use the slope from the linear change variable to estimate how long it would take to return to baseline.

All models also included within-person changes in income as a control variable
(specifically, the log of a person's monthly household income was included as a within-person variable, and this variable was centered around the person's average preunemployment level of income). In addition, various person-level characteristics (age, sex, log of average household income across the entire study) were included in the model to determine whether these characteristics moderated the within-person patterns. Finally, three additional person-level variables were included in the models: (a) whether the person had ever been unemployed before the study began, (b) whether the person was unemployed for more than 1 year during the reaction phase, and (c) whether the person ever became unemployed again. If people adapt to continuous or repeated negative life circumstances, then individuals who have been unemployed in the past or who are unemployed for long periods of time should not experience quite as large a drop in satisfaction as do individuals who are unemployed for the first time.

RESULTS

Results from the reaction and adaptation multilevel model are reported in Table 1. In this model, the initial-level intercept (_00) reflects a person's baseline satisfaction, the reaction intercept (_20) reflects the average drop in satisfaction from the baseline level during the reaction period, and the adaptation intercept (_30) reflects the average difference from baseline during the adaptation period. The income intercept (_10) reflects the average effect of income. The additional parameters in the model reflect the extent to which various person-level characteristics moderate changes in satisfaction across these three periods.

An examination of the initial-level intercept shows that individuals who would become unemployed at some point during the study were actually slightly happier than average in the years before their bout of unemployment. This baseline level of satisfaction was also moderated by a number of person-level characteristics. For example, individuals who had a higher average income over the course of the 15-year study reported significantly higher baseline satisfaction than those who had a lower income.4 In addition, two of the three variables indexing the extent of unemployment were related to baseline satisfaction. Specifically, the significant previously unemployed parameter shows that individuals who were unemployed at some point in time before the study began were significantly less satisfied than individuals who had not experienced a previous bout of unemployment (perhaps suggesting that these individuals never adapted to that event). In addition, the significant multiple bouts parameter shows that individuals who would later experience more than one period of unemployment during the 15 years of the study actually began the study less satisfied than people who would experience only one bout of unemployment (even after controlling for the experience of unemployment before the study began). Thus, lower levels of satisfaction prospectively predicted the experience of later events.

Table 1 also shows that people became more than one half of a point less satisfied during the reaction phase of unemployment, even after controlling for changes in income across the two periods. The difference in satisfaction was fairly large--approximately one half of a standard deviation in baseline levels of satisfaction (the standard deviation for the intercept was 1.11). Note that this parameter reflects changes in satisfaction in the year before unemployment and the year after unemployment, as well as during unemployment. The change that occurred just during the years of unemployment was even larger, as we show later. Change in satisfaction during the reaction period was moderated by sex, with women reporting less negative reactions to unemployment than men. Contrary to the prediction that extended or multiple exposures to the same event should dampen the impact of that event, reaction to unemployment was not
moderated by previous unemployment. In addition, individuals who were unemployed for longer than 1 year experienced a significantly more negative reaction than those who were unemployed for less time (reflected in the significant multiple-year parameter), suggesting that they did not adapt over time (a finding that is consistent with Clark's, 2002, analysis of habituation to unemployment).

The critical test for set-point theory is whether people return to baseline levels of satisfaction following an important event. Thus, the critical test in these data is whether the adaptation parameter was significantly different from zero. Table 1 shows that, on average, people did not return to baseline levels long after the period of unemployment had ended (recall that this parameter reflects the average of all years that were at least 2 years after unemployment). This finding held even after controlling for differences in income from the baseline period to the adaptation period, which shows that the lack of adaptation was not simply due to the fact that people's economic problems still existed. In addition, although the adaptation parameter was significantly smaller than the reaction parameter, \(t^2 (1, N = 1,890) = 11.14, p < .01 \), which shows that people did start shifting back toward baseline during the adaptation phase, the adaptation parameter was still fairly large. Thus, the experience of unemployment seems to have created a new baseline level of life satisfaction that was lower than respondents' initial levels of satisfaction before the unemployment began. The moderator analyses show that two person-level characteristics influenced this adaptation parameter. Individuals with a high average income had a significantly less negative adaptation parameter than those with low average income, and individuals who would become unemployed again in the future had a significantly more negative adaptation parameter than those who would not.

We also calculated the correlations among these within-person parameters to determine whether initial satisfaction correlated with reaction or adaptation to unemployment. Initial baseline levels of satisfaction correlated -.11 (SE = .02) with the reactivity parameter, \(t(1,890) = 4.81, p < .001 \), and -.37 (SE = .02) with the adaptation parameter, \(t(1,890) = 17.31, p < .001 \). Because these parameters can be thought of as change scores, these correlations indicate that people who started out with high levels of life satisfaction reacted slightly more negatively than people who started out with lower levels of satisfaction and also were less likely to adapt back to baseline. Perhaps more strikingly, the reaction parameter correlated .64 (SE = .02) with the adaptation parameter, \(t(1,890) = 36.20, p < .001 \), demonstrating that initial reaction to unemployment strongly predicted how individuals adapted in the long run. If a person experienced a big drop in satisfaction during unemployment, it was very likely that that person would remain at a low level of satisfaction after becoming reemployed. The stability of satisfaction from the reaction period to the adaptation period provides strong support for the idea that unemployment created a new set point for life satisfaction.

As a final step in our analyses, we tested whether there were any linear trends in satisfaction following reemployment. Figure 1 presents the predicted changes in satisfaction that occurred before, during, and after unemployment (in this model, we separated the year before unemployment from the years of unemployment). Results from this analysis showed that (a) satisfaction declined in the year before unemployment \((_{-} = -0.35, SE = 0.05) \), \(t(3, 726) = -7.72, p < .001 \); (b) satisfaction dropped 0.83 points below baseline in the years of unemployment \((SE = 0.05) \), \(t(3, 726) = -16.96, p < .001 \); and (c) in the first year after unemployment, individuals were still 0.34 points below their initial baseline \((SE = 0.04) \), \(t(3, 726) = -7.74, p < .001 \). Furthermore, the linear trend parameter was nonsignificant and very close to zero \((_{-} = -0.01, SE = 0.01) \), \(t(3, 726) = -1.27, n.s. \). Thus, given the very large sample size and the high power to detect an effect in
The experience of unemployment did, on average, alter people's set-point levels of life satisfaction. People were less satisfied in the years following unemployment than they were before unemployment, and this decline occurred even though individuals eventually regained employment. Furthermore, the changes from baseline were very stable from the reaction period to the adaptation period--individuals who experienced a large drop in satisfaction during unemployment were very likely to be far from baseline many years after becoming reemployed. There was also no indication that satisfaction levels would eventually return to baseline if the study were continued for many more years, as the linear trend parameter was nonsignificant and very close to zero. Thus, unemployment seems to have had a lasting effect on individuals' life satisfaction.

One question is whether some personal event such as alcoholism or depression might have led to both unemployment and lower life satisfaction, without unemployment having a causal role. Although this possibility cannot be ruled out entirely, several findings cast doubt on it. First, prior to unemployment, individuals who would eventually become unemployed reported high life satisfaction, and did not show evidence of lower levels that would likely result from problems with alcohol, dysphoria, and so forth. Furthermore, even individuals whose satisfaction dropped dramatically after unemployment showed some rebound toward baseline--not the pattern we would expect from a downward spiral due to internal causes. Thus, we believe that the present evidence is most readily interpreted in terms of the effects of unemployment on long-term life satisfaction.

The results from the current study are not necessarily incompatible with the large body of literature supporting set-point theory. It may be that there are only a few life events--like unemployment--that are powerful enough to lead to long-term changes in life satisfaction. For example, in another study that used the GSOEP data set, we (Lucas et al., 2003) found that people eventually adapted to marriage and widowhood, though adaptation to widowhood was slow and not quite complete. However, the current results do contradict the strongest forms of the set-point model, which suggest that adaptation is inevitable. The current study also demonstrates that large-scale longitudinal studies are needed to provide strong tests of set-point theory.

Our results are also not incompatible with the idea that temperament is a powerful influence on SWB; the data simply suggest that temperament is not the sole influence on long-term levels of life satisfaction. Events such as unemployment can have a long-lasting influence on people's set-point level of satisfaction. It is important to note, however, that these and other data demonstrate that there are clear individual differences in reactions to important life events (Lehman, Lang, Wortman, & Sorenson, 1989; Lucas et al., 2003). Some people adapt quickly, whereas others never seem to return to initial levels. Thus, because adaptation is not inevitable, an important goal for future research will be to elucidate the factors that speed adaptation to unpleasant events and prolong reactions to pleasant events.

DISCUSSION
Acknowledgments
The data used in this article were made available to us by the German Socio-Economic Panel Study at the German Institute for Economic Research (DIW), Berlin.

REFERENCES

(Received 10/30/02; Revision accepted 1/16/03)

1. We also reran all analyses with the uncentered satisfaction scores, and results were very similar to those reported here.
2. Of the participants who were not included in the analyses, 1,149 were excluded because they were unemployed when they started the study, and 302 were excluded because they dropped out of the study before regaining employment.
3. Some of the individuals experienced subsequent periods of unemployment during the adaptation phase. Clearly, this subsequent unemployment changes the meaning of the adaptation period. This complicating factor could be handled by including subsequent periods as additional within-person variables. However, adding these additional periods would have resulted in complicated models that, in most cases, could not be estimated. Therefore, we chose a simpler strategy in which the experience of multiple events is considered a between-person variable that moderates the within-person effects. Thus, we could determine whether individuals who experienced subsequent unemployment had lower satisfaction during the adaptation phase than did individuals who remain employed.
4. Within the sample of individuals who became unemployed, average income correlated .22 with life satisfaction. Within the entire GSOEP sample, this correlation was .20. Both of these correlations are on the high end of the range of correlations that are typically found within Western nations. For example, in a review of the income-SWB association, Diener and Biswas-Diener (2002) reported that most surveys find correlations in the range of .13 to .24.
5. This difference cannot be explained by regression to the mean because satisfaction levels did not just trend toward the mean, they actually dropped below the mean. In addition, differences across the three periods cannot be explained by attrition because these are within-person changes (and thus, declines from baseline to the adaptation period could not simply be due to the happiest people dropping out of the study).

APPENDIX

We tested our hypotheses using a random intercept and random slopes model (Bryk & Raudenbush, 1992), estimated with HLM 5 (Raudenbush, Bryk, & Congdon, 2000). The level-1 model was

\[\text{life satisfaction}_t = _0 + _1(\text{income}) + _2(\text{react}) + _3(\text{adapt}) + r \]
React and adapt were dummy variables coded in such a way as to allow the estimated parameters to reflect the changes in life satisfaction that occurred during the reaction and adaptation phases. React was coded as 1 for the year prior to unemployment, all years of the first period of unemployment, and the year after unemployment. It was coded as 0 for all years that were at least 2 years prior to unemployment and all years that were at least 2 years after unemployment. Adapt was coded as 1 for all years that were at least 2 years after unemployment and 0 for all other years. Thus, _0 reflects baseline level of satisfaction in all years at least 2 years prior to unemployment; _2 reflects the change from baseline in the reactivity period; and _3 reflects the change from baseline in the adaptation period. Not all individuals were in the study for all three periods (some started the survey 1 year before unemployment or left the survey 1 year after unemployment). All 3,733 individuals who met our initial selection criterion were used to estimate the fixed components of the model, but only the 1,891 individuals with data for all three periods were used to estimate the associations among the parameters and to test the significance of the variance components.

In the level-2 model, the level-1 parameters were predicted from a variety of person-level variables (a complete list is presented in the Method section). For example, the level-2 equation for the intercept was

\[_0 = _00 + _01(\text{average income}) + _02(\text{sex}) + _03(\text{age}) + _04(\text{bouts}) + _05(\text{years}) + _06(\text{previous unemployment}) + U_0 \]

The level-2 equations for the other level-1 parameters (not shown) are identical to the level-2 model for the intercept. Before testing these level-2 predictors, we conducted preliminary analyses to determine whether there was significant random variability in the level-1 parameters. All tests of these variance components were significant. In addition, we checked to make sure that multicolinearity was not a problem by examining the correlations among all level-2 predictors. These correlations were all very small (most were below .10 and none exceeded .18).

The linear change model included six level-1 parameters:

\[\text{life satisfaction}_j = _0 + _1(\text{income}) + _2(\text{year before}) + _3(\text{unemployed}) + _4(\text{after}) + _5(\text{linear change}) + r \]

The variable year before was coded 1 in the year before unemployment; the variable unemployed was coded 1 in all years of unemployment; and the variable after was coded 1 in all years after the first bout of unemployment. These variables were coded 0 for all other years. The linear change variable started at 1 during the 2nd year after the first bout of unemployment and increased by 1 for each subsequent year. This variable was coded 0 for all previous years. The level-2 model included the same person-level predictors as did the reaction and adaptation model. This model was a little more complex than would be ideal given the amount of data that was available for each person. To address this concern, we tested a number of simpler models, and the parameters were very similar in all models. Thus, we retained the more complicated model to describe the changes that occurred before, during, and after unemployment.

Fig. 1. Predicted changes in life satisfaction before, during, and after unemployment. Satisfaction scores are centered. Year 0 is the year of unemployment.
<table>
<thead>
<tr>
<th>Effect</th>
<th>Coefficient</th>
<th>S.E.</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial level, (_0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept, (_{00})</td>
<td>0.11</td>
<td>0.03</td>
<td>3.06</td>
<td><.01</td>
</tr>
<tr>
<td>Sex, (_{01})</td>
<td>-0.03</td>
<td>0.05</td>
<td>-0.66</td>
<td>n.s.</td>
</tr>
<tr>
<td>Age, (_{02})</td>
<td>-0.00</td>
<td>0.00</td>
<td>-1.09</td>
<td>n.s.</td>
</tr>
<tr>
<td>Average Income, (_{03})</td>
<td>0.45</td>
<td>0.07</td>
<td>6.22</td>
<td><.001</td>
</tr>
<tr>
<td>Multiple Bouts, (_{04})</td>
<td>-0.17</td>
<td>0.07</td>
<td>-2.41</td>
<td><.05</td>
</tr>
<tr>
<td>Multiple Years, (_{05})</td>
<td>-0.10</td>
<td>0.06</td>
<td>-1.80</td>
<td>n.s.</td>
</tr>
<tr>
<td>Previously Unemployed, (_{06})</td>
<td>-0.33</td>
<td>0.08</td>
<td>-4.00</td>
<td><.001</td>
</tr>
<tr>
<td>Within-Person Income, (_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept, (_{10})</td>
<td>1.04</td>
<td>0.10</td>
<td>10.49</td>
<td><.001</td>
</tr>
<tr>
<td>Sex, (_{11})</td>
<td>-0.27</td>
<td>0.14</td>
<td>-1.96</td>
<td><.05</td>
</tr>
<tr>
<td>Age, (_{12})</td>
<td>0.00</td>
<td>0.01</td>
<td>0.72</td>
<td>n.s.</td>
</tr>
<tr>
<td>Average Income, (_{13})</td>
<td>-0.45</td>
<td>0.18</td>
<td>-2.59</td>
<td><.01</td>
</tr>
<tr>
<td>Multiple Bouts, (_{14})</td>
<td>0.15</td>
<td>0.17</td>
<td>0.92</td>
<td>n.s.</td>
</tr>
<tr>
<td>Multiple Years, (_{15})</td>
<td>-0.27</td>
<td>0.15</td>
<td>-1.80</td>
<td>n.s.</td>
</tr>
<tr>
<td>Previously Unemployed, (_{16})</td>
<td>0.22</td>
<td>0.20</td>
<td>1.08</td>
<td>n.s.</td>
</tr>
<tr>
<td>Reaction, (_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept, (_{20})</td>
<td>-0.53</td>
<td>0.04</td>
<td>-14.52</td>
<td><.001</td>
</tr>
<tr>
<td>Sex, (_{21})</td>
<td>0.21</td>
<td>0.05</td>
<td>3.93</td>
<td><.001</td>
</tr>
<tr>
<td>Age, (_{22})</td>
<td>0.00</td>
<td>0.00</td>
<td>2.20</td>
<td><.05</td>
</tr>
<tr>
<td>Average Income, (_{23})</td>
<td>0.14</td>
<td>0.08</td>
<td>1.79</td>
<td>n.s.</td>
</tr>
<tr>
<td>Multiple Bouts, (_{24})</td>
<td>-0.00</td>
<td>0.07</td>
<td>-0.03</td>
<td>n.s.</td>
</tr>
<tr>
<td>Multiple Years, (_{25})</td>
<td>-0.13</td>
<td>0.06</td>
<td>-2.33</td>
<td><.05</td>
</tr>
<tr>
<td>Previously Unemployed, (_{26})</td>
<td>0.06</td>
<td>0.09</td>
<td>0.68</td>
<td>n.s.</td>
</tr>
<tr>
<td>Adaptation, (_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept, (_{30})</td>
<td>-0.40</td>
<td>0.04</td>
<td>-9.11</td>
<td><.001</td>
</tr>
<tr>
<td>Sex, (_{31})</td>
<td>0.13</td>
<td>0.06</td>
<td>1.95</td>
<td>n.s.</td>
</tr>
<tr>
<td>Age, (_{32})</td>
<td>0.00</td>
<td>0.00</td>
<td>1.04</td>
<td>n.s.</td>
</tr>
<tr>
<td>Average Income, (_{33})</td>
<td>0.19</td>
<td>0.09</td>
<td>2.00</td>
<td><.05</td>
</tr>
<tr>
<td>Multiple Bouts, (_{34})</td>
<td>-0.26</td>
<td>0.08</td>
<td>-3.14</td>
<td><.01</td>
</tr>
<tr>
<td>Multiple Years, (_{35})</td>
<td>-0.00</td>
<td>0.07</td>
<td>-0.00</td>
<td>n.s.</td>
</tr>
<tr>
<td>Previously Unemployed, (_{36})</td>
<td>0.17</td>
<td>0.11</td>
<td>1.64</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

Note: \(N = 3,733\).