“My research is about…” Many graduate students finish this sentence with a long, awkward pause and a deep sigh, followed by the admission that they have done a number of unrelated studies in order to fulfill their program requirements. However, as APS Past President Henry L. Roediger, III, wrote in a 2007 Observer article, “Early in one’s career, publishing a steady series of journal articles is how one builds a reputation.” A programmatic line of research on one topic helps young scientists transition from frantic graduate students to accomplished scientists. This column provides my ideas and suggestions, gathered from experience, for creating a coherent line of experimental research while in graduate school.

1. **Start with a specific project.** Entering graduate school, every student is wide-eyed and willing to learn everything about the field, from how the brain works to the secrets of successful social relationships. Limiting yourself to a specific topic is crucial at the beginning. The field of psychology is so large that new graduate students can waste precious time trying to find a topic. Look at the resources available in your lab and the research interests of your supervisors; these are great starting points for finding your own niche.

2. **Have a strong paradigm.** It is important to have a paradigm that works. Do not shy away from investing time in pilot testing and modifying your research tools. A strong paradigm can help create your line of research. Developing a paradigm takes effort and can greatly affect the outcome of your research. Examine the instruments, paradigms, and tools already available and consider modifying them to answer your research questions. Some researchers publish their paradigms online (for example, a number of scripts for paradigms using Inquisit software are available at www.millisecond.com/download/library). I have also gained access to other research tools by just e-mailing the authors. Modifying these paradigms for your purposes will get you in the lab earlier and give you more time for follow-up studies.

3. **Work with your supervisor.** Your supervisor is as interested as you are in creating a good research program. Such a program will not only add a few articles to his or her list of publications, it will also provide the sense of satisfaction that comes with mentoring a good researcher. Your supervisor can also learn a thing or two from you. Since examining theory and published data with your supervisor can lead to new research ideas or theoretical breakthroughs, make sure you set aside time for those discussions. Certain supervisors might be more flexible than others, but all of them want to conduct good research. Push your ideas, and the ones that are worth the effort will be given the green light.

4. **Look for inspiration.** Once you have a good paradigm, start browsing literature that lies a bit outside of your specific topic. For example, if you are researching a phenomenon related to personality, look at clinical studies in which that phenomenon has been hypothesized to play a role. This process can help you see links between what you are examining in your current experiment and other research domains. Write down these ideas. Later, once you have finished your first experiment and are ready to continue, these ideas will be helpful. Finding time to read additional literature can prove difficult during graduate studies. However, browsing the titles of articles in specific journals, setting up automatic research alerts
(e.g., Google Scholar Alerts), or following specific authors on social media (e.g., Twitter, ResearchGate) can help you stay informed.

5. **Attend conferences and network.** Conferences can not only inspire you but also help you further your programmatic research line. Both large, multidisciplinary conferences (e.g., APS) and more specialized meetings provide opportunities to network. You can use these conferences as a way to start collaborations, which will help you work more efficiently.

6. **Spend time thinking about theoretical issues.** Graduate students do not devote as much time to theory as they should. In order to design your own line of research, you should examine the empirical results available and consider what they mean for the theoretical framework of your research. Comparing empirical data with theoretical assumptions often opens up more questions than it answers. These questions are the ones you might want to tackle in your follow-up experiments. Knowing a theory inside and out and examining which of its tenets are already empirically supported is another way of finding your niche. Many researchers have made a career by (dis)proving a theory and amending it to cover new empirical data.

7. **Collaborate with students and research assistants.** Undergraduate students can develop their own talent by helping with your research. Pilot-testing, data-gathering, and data-entry tasks give undergraduates first-hand laboratory experience. In addition, explaining your topic and your proposed research to student assistants who are still building their theoretical skills allows you to clarify your own ideas and can also serve as a source of inspiration.

8. **Present your research as a narrative.** Despite your efforts, you might still think your experiments look disjointed and do not form a logical series. If that’s the case, stop, take two steps back and look at your studies. Are there any common themes? Are there any common research tools? Is there a theory that focuses on these phenomena? Think carefully about how you moved from one study to another and what story your data tell that might be important to the field.

9. **Be persistent but know when to quit.** This is probably the hardest and vaguest tip of all. Don’t expect your first experiment to work perfectly. Be prepared for the disappointment that occurs in the life of every researcher. However, if after four or five experiments your effects are still small or elusive, consider changing gears. This doesn’t mean that your efforts will be lost; write the data up and try to publish. You might save trouble for a future graduate student.

10. **Be a researcher.** Even if you are unsure about staying in academia, identify yourself as a researcher as well as a student. Do not think about your experiments as something you need for your Master’s or PhD; consider research your personal goal. This viewpoint will increase your motivation to expand your scientific expertise and explore the boundary conditions of the phenomena you are interested in. You will no longer be satisfied by examining whether a mechanism is present: Clarifying when and how it operates and what its causes and effects are will become important topics you.

Students can create a programmatic research line during graduate school. The effort and persistence you invest in your research will be noticed and will help open doors to future success in academia.