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Human concept learning clearly depends upon perception. Our concept of “gerbil” is built out of
perceptual features such as“furry,” “small,” and “four-legged.” However, recent research has found
that the dependency works both ways. Perception not only influences, but is influenced by, the concepts
that we learn. Our laboratory has been exploring the psychological mechanisms by which concepts and
perception mutually influence one another, and building computational models to show that the circle of
influences is benign rather than vicious.

Aninitial suggestion that concept learning influences perception comes from a consideration of the
differences between novices and experts. Experts in many domains, including radiologists, wine tasters,
and Olympic judges, develop specialized perceptual tools for analyzing the objects in their domain of
expertise. In trying to study novice/expert differences under controlled laboratory conditions, we have
found that the process of learning new concepts alters perceptual judgments. In one set of experiments
(Goldstone, 1994), participants first were trained to categorize simple squares into two groups, based on
either their size or brightness. After this training, they made same/different judgments (“ Are these two
squares physically identical?’) involving dimensions that were either relevant or irrelevant during
categorization training. Categorizations that the participants learned in the first phase of the experiment
affected their ability to make strictly physical judgments in the second phase. First, participants greatly
increased their perceptual sensitivity to the dimension that was relevant during categorization, and
dlightly decreased their sensitivity to the irrelevant dimension. Second, the increase in sensitivity was
particularly pronounced right at the boundary between the learned categories.

TWO OPPOSING MECHANISM S OF PERCEPTUAL CHANGE

In subsequent work, we have explored two additional mechanisms of perceptual change during concept
learning that are, at first sight, contradictory. The first of these mechanisms, unitization, creates
perceptual units that combine object components that frequently co-occur. Components that were once
perceived separately become psychologically fused together. For example, we (Goldstone, 2000) gave
participants extended practice learning to place a complex concatenation of doodles into Category 1,
while all of the “near misses’ to this pattern belonged in Category 2. All of the pieces of the Category 1
pattern must be attended to accurately categorize it, because each piece is also present in several
Category 2 patterns. After 20 hours of practice with these stimuli, participants eventually can categorize
the Category 1 doodle very accurately, and more quickly than would be predicted if they were explicitly
combining separate pieces of information from the doodle together. Consistent with other work on
perceptual unitization (Gauthier et al., 1998; Shiffrin & Lightfoot, 1997), we argue that one way of
creating new perceptual building blocks is to create something like a photographic mental image for
highly familiar, complex configurations. Following this analogy, just as your local camera store does not
charge more money for devel oping photographs of crowds than pictures of a single person, once a
complex mental image has been formed, it does not require any more effort to process the unit than the
components from which it was built.



Figure 1 — Arbitrary
dimensions can be constructed
by morphing between two
faces. Each of the facesin the 4
X 4 array is comprised of a
value aong Dimension A
ranging from Face 1 to Face 2,
and avalue along Dimension B
from Face 3 to Face 4.

The second mechanism, dimension differentiation, involves learning to isolate perceptual dimensions
that were originally psychologically fused together. For example, saturation and brightness are fused
aspects of color for most people, in the same way that “heat” and “temperature” are fused together in
most peopl€’ s minds before they take a course in physics. However, if only one of these fused
dimensionsisrelevant for a categorization, people can become selectively sensitized to that one
dimension (Goldstone, 1994). Furthermore, Goldstone and Steyvers (2001) have argued that genuinely
arbitrary dimensions can become isolated from each other. Their subjects first learned to group the 16
faces shown in Figure 1 into categories that either split the faces horizontaly or vertically into two
groups with eight faces each. The faces varied along arbitrary dimensions that were created by morphing
between randomly paired faces. Dimension A was formed by gradually blending from Face 1 to Face 2,
while Dimension B was formed by gradually blending from Face 3 to Face 4. Each of the remaining
facesis defined half by its value on Dimension A and half by its value on Dimension B. Results showed
that 1) people could easily learn either horizontal or vertical categorization rules; 2) once a
categorization was learned, participants could effectively and automatically ignore variation along the
irrelevant dimension; 3) the category-relevant dimension became especially sensitized when participants
were given atransfer same/different perceptual judgment task; and 4) there was positive transfer
between categorization rules that presumed the same organization of faces into perceptual dimensions
and negative transfer between rules that required cross-cutting, incompatible organizations. Together,
these results strongly suggest that there is more to category learning than learning to selectively attend to
existing dimensions. Perceptual learning also involves creating new dimensions that can then be
selectively attended once created.

A COMPUTATIONAL RECONCILIATION

Unitization involves the construction of asingle functional unit out of component parts. Dimension
differentiation divides wholes into separate component dimensions. There is an apparent contradiction
between experience creating larger “chunks’ via unitization and dividing an object into more clearly
delineated components via differentiation. Thisincongruity can be transformed into a commonality at a
more abstract level. Both mechanisms depend on the requirements established by tasks and stimuli.
Objects will tend to be decomposed into their parts if the parts reflect independent sources of variation,
or if the parts differ in their relevancy. Parts will tend to be unitized if they co-occur frequently, with all
partsindicating a similar response. Thus, unitization and differentiation are both processes that build



appropriately sized representations for the tasks at hand.

We have developed computational models to show how the concept learning can lead to learning new
perceptual organizations via unitization and differentiation (Goldstone et al., 2000; Goldstone, 2003).
We have been drawn to neural networks that possess units that intervene between inputs and outputs and
are capable of creating internal representations. For the current purposes, these intervening units can be
interpreted as |earned feature detectors, and represent an organism’s acquired perceptua vocabulary.
Just as we perceive the world through the filter of our perceptual system, so the neural network does not
have direct access to the input patterns, but rather only has access to the detectors that it devel ops.

Figure 2 — A sample output
from the CPLUS model. After
being exposed to the input
pictures and their
categorizations, the neural
network creates detectors that
can be assembled, like building
blocks, to recreate the inputs.
The detectors are learned at the
same time that they are
associated to categories. (Solid
lines represent excitatory
connections; dashed lines
represent inhibitory
connections.)

The Conceptual and Perceptual Learning by Unitization and Segmentation model, or CPLUS, isgiven a
set of pictures as inputs, and produces as output a categorization of each picture. Along the way to this
categorization, the model comes up with adescription of how the picture is segmented into pieces. The
segmentation that CPLUS creates will tend to involve parts that 1) obey the Gestalt laws of perceptual
organization by connecting object parts that have similar locations and orientations, 2) occur frequently
in the set of presented pictures, and 3) are diagnostic for the categorization. For example, if the five
input pictures of Figure 2 are presented to the network and labeled as belonging to Category A or
Category B, then originally random detectors typically become differentiated as shown. This adaptation
of the detectors reveals three important behavioral tendencies. First, detectors are created for parts that
recur across the five objects, such as the lower square and upper rectangular antenna. Thus, the first
input picture on the left will be represented by combining responses of the square and rectangul ar
antenna detectors. Second, single, holistic detectors are created for objects like the rightmost input
picture that do not share any large pieces with other inputs. In this way, the model can explain how the
same learning process unitizes complex configurations and differentiates other inputs into pieces. Third,
the detectors act asfilters that lie between the actual inputs and the categories. The learned connections
between the acquired detectors and the categories are shown by thick solid lines for positive connections
and dashed lines for negative connections. The network learns to decompose the leftmost input picture
into a square and rectangular antenna, but also learns that only the rectangular antennais diagnostic for



categorization, predicting that Category A is present and that Category B is not. Interestingly, the
network builds detectors at the same time that it builds connections between the detectors and
categories. The psychological implication is that our perceptual systems do not have to be set in place
before we start to use them. The concepts we need can and should influence the perceptual units we
create.

Figure 3—Anillustration of the creation and
subsequent use of perceptual building blocks. In
the first panel, aman learned about a chicken. In

the second panel, the man interprets the rest of the
world in terms of the chicken he has |earned.
[Conceived by Robert Goldstone. Illustrated by Joe
Lee]

UNITING CONCEPTS AND PERCEPTION

One of the most powerful ideas in cognitive science has been the notion that flexible cognition works by
assembling afixed set of building blocks into novel arrangements. Our work corroborates the
productivity and efficiency of using building blocks to create novel arrangements, but we are also
claiming that the building blocks themselves may be flexibly adaptive rather than fixed. The concepts
we learn can reach down and influence the very perceptual descriptions that ground the concepts. This
interactive cycle isfiguratively shown in Figure 3. A person creates perceptual building blocks from
their experiences in the world. Then, the person’s subsequent experience of this same world is
influenced by these learned building blocks.
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The Troland Award is given each year to two young investigators (age 40 or younger) to recognize
unusual achievement and further empirical research in psychology regarding the relationships of
consciousness and the physical world. Funds are to be used by the awardee to support his or her research
within the broad spectrum of experimental psychology, including, for example, the topics of sensation,
perception, motivation, emotion, learning, memory, cognition, language, and action. For both awards,
preference will be given to experimental work taking a quantitative or other formal approach. For more
information, please visit www.nationalacademies.org.
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