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In his inaugural Presidential Column, APS President C. Randy Gallistel introduced beginners to
Bayesian statistical analysis. This month, he continues the introduction to Bayes with a lesson on using
prior distributions to improve parameter estimates.

In last month’s column, I focused on the distinction between likelihood
and probability.

To review, probability attaches to the possible outcomes from a random process like coin flipping
(known technically as a Bernoulli process). A probability distribution gives the probabilities for the
different possible results given the parameters of the process. Suppose we are given a 50% chance of
success (i.e., of flipping a head; p = .5) and told that there were 10 flips. Given these parameters, the
probability of getting exactly 5 heads when flipping a coin 10 times is roughly .25.

Likelihood, by contrast, attaches to our parameter estimates and to our hypotheses. For example, given
that we have observed 9 heads in 10 flips of a coin, the likelihood that the probability of flipping a head
is 50% (i.e., that p = .5) is very low. The likelihood that p = .9 is greater by a factor of almost 40. The
likelihood function tells us the relative likelihoods of the different possible values for p.

The likelihood function is only one of two components of a Bayesian calculation, however. The other is
the prior, which is necessary for estimating parameters and for drawing statistical conclusions. Using
prior distributions improves one’s parameter estimates and quantifies one’s hypotheses.

A prior distribution can and should take account of what one already knows. However, when one knows
very little, one can use the Jeffreys priors, named after English mathematician Sir Harold Jeffreys, who
helped revive the Bayesian view of probability. Jeffreys priors are some of the most interesting and
useful prior distributions, and they derive from the mathematical implications of knowing absolutely
nothing about the parameters one wants to estimate other than their possible ranges.

http://www.psychologicalscience.org/index.php/publications/observer/2015/september-15/bayes-for-beginners-probability-and-likelihood.html


Improving Parameter Estimates With a Prior

A prior distribution assigns a probability to every
possible value of each parameter to be estimated. Thus, when estimating the parameter of a Bernoulli
process p, the prior is a distribution on the possible values of p. Suppose p is the probability that a
subject has done X. Assume we initially have no idea how widespread this practice is. We ask the first
three subjects whether they have done it. They all say, “No.” At this early stage, what proportion of the
population should we estimate has done X? And how certain should we be about our estimate?

The data by themselves give p(X) = 0. That value specifies a distribution with no variance; it predicts
that every subsequent subject also will not have done X. Our intuition suggests that it is unwise to take
three people’s experiences as representative of all people’s experiences. The data at hand, however, do
give us some information: We already know that p(X) ? 1 (because at least one subject has not done X),
and it seems unlikely that p(X) > .9 (because none of our three subjects have done X).

Bayesian parameter estimation rationalizes and quantifies these intuitions by bringing a prior
distribution into the calculation. The prior distribution represents uncertainty about the value of the
parameters before we see data. Jeffreys realized that knowing nothing about a parameter other than its
possible range (in this case, 0–1) often uniquely specifies a prior distribution for the estimation of that
parameter.



The Jeffreys prior for the p parameter of a Bernoulli process is in the form called the beta distribution.
The beta distribution itself has two parameters, denoted a and b. For the Jeffreys prior, these take the
values a = b = .5. Following the common practice, I call these parameters hyperparameters to
distinguish them from the parameter of the distribution that we are trying to estimate.

By adopting a Jeffreys prior, we can calculate a best estimate for p and quantify our current uncertainty
about p at every stage of data gathering, from the stage where we have no data to the stage where we
have an n in the millions. The Bayesian calculation requires multiplying the likelihood function by the
prior distribution and normalizing the result in order to obtain the posterior distribution (i.e., a new
distribution of probabilities for the different values of p, taking into account the data and the prior). This
process sounds pretty intimidating.

When we use the Jeffreys prior, however, the posterior distribution takes the same form as the prior
distribution; a beta distribution goes in as the prior and a beta distribution emerges as the posterior. (A
prior distribution with this wonderful property is called a conjugate prior.) Thus, the only thing that the
computation does is change the values of the parameters of a beta distribution. Moreover, the
computation of the new values for these parameters is very simple: apost = aprior + ns and bpost = bprior + nf ,
where ns denotes the number of successes (in this case, subjects who have done X) and nf the number of
failures (subjects who haven’t). The best estimate of p — the mean of the posterior distribution — is apost

/ (apost + bpost). Statistical calculations never get easier than that.

Best of all, the resulting posterior distribution tells us how uncertain we should be about the true value of
p. In traditional statistics, this is what the confidence interval is supposed to do. (It does it badly, but
that’s another story.) Estimating a confidence interval for estimates of p when the sample is low is not
straightforward, whereas the calculation of the posterior distribution using a conjugate prior is, as
already explained, simplicity itself.

Figure 1 plots the likelihood function, the Jeffreys prior, and the posterior distribution for the case where
we have three negatives and no positives. Notice how well Bayesian statistics can capture what our
intuition tells us we can learn from this small sample.
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